Statistics Exercises - Solutions

Covariance, correlation, the t-test

1. Consider the following data:

Calculate the correlation coefficient between variables x and y.

First we calculate the means E(x) = 5.14 and E(y) = 1.71. Then, we calculate the unbiased estimators for the variance Var(x) = 12.14 and Var(y) = 1.90. Using the formula for the unbiased estimator for the covariance, we get Cov(x, y) = -4.12. Our correlation coefficient then is Corr(x, y) = -0.86.

2. Consider the following data:

Calculate the correlation coefficient between variables x and y. What does this mean?

We first calculate the means E(x) = 4 and E(y) = 2. Then we calculate the unbiased estimators for the variance: Var(x) = 10 and Var(y) = 2.5. The covariance can then be calculated as Cov(x, y) = 5. Thus our correlation coefficient is 1. This means that the data = "fully" linearly correlated, or that there is a function y = ax + b that translated the x data into the y data.

- 3. We want to check if on average a cup of butter contains 250 grams or less. A sample test of 25 cups reveals an average of 248.2 grams and a standard deviation of 2.5 grams. Check whether the smaller mean is a significant difference for a significance threshold of 5%. Or null hypothesis is $H_0: \mu = 250$. We test this against $H_1: \mu < 250$. Therefore our statistic is $T = \frac{\bar{X} 250}{S}\sqrt{n}$. From the sample we get a t-value of $T = \frac{248.2 250}{2.5}\sqrt{25} = -3.6$. We reject the null hypothesis for too small values of T. Therefore $P(T \leq t_{\alpha}; H_0) = \alpha = 0.05$. Using the table we find $P(T(24) \geq 1.71) = P(T(24) \leq -1.71) = 0.05$, therefore $t_{\alpha} = -1.71$. Since our t-value is smaller than t_{α} , we reject the null hypothesis. Therefore the cups' weights are on average lower than expected.
- 4. We want to find out if persons of 40 years old are on average heavier than persons of 30 years old. We have taken two independent sample sets, given as follows:

30y y	weight	77	65	73	58	63	49	51	82	103	69				
40	· 1 /	100	70	20		00	70	00	20	01	05	4.4	171	00	H O

40y weight $\parallel 102 \mid 73 \mid 56 \mid 55 \mid 83 \mid 72 \mid 88 \mid 70 \mid 81 \mid 85 \mid 44 \mid 71 \mid 62 \mid 78 \mid 75$ Give an analysis of this situation and use the t-test to find out whether our hypothesis is valid for a significance threshold of 10%.

Our null hypothesis is $H_0: \mu_X = \mu_Y$ which we want to check agains $H_1: \mu_X < \mu_Y$. This is a two-sample unpaired test, so our statistic is $T = \frac{\bar{X} - \bar{Y}}{S\sqrt{\frac{1}{n} + \frac{1}{m}}}$. From the sample sets we get

 $\bar{X} = 69, \, \bar{Y} = 73, \, \hat{\sigma}_X^2 = 255.8 \text{ and } \hat{\sigma}_Y^2 = 213.7.$ Therefore $S = \sqrt{\frac{9\hat{\sigma}_X^2 + 14\hat{\sigma}_Y^2}{23}} = 15.2.$ Filling this in for the statistic T we get T = -0.65.

We reject the null hypothesis for too small values of T. Then, $P(T(23) \leq t_{\alpha}; H_0) = P(T(23) \geq -t_{\alpha}; H_0) = 0.10$. By looking in the table we find $-t_{\alpha} = 1.32$, thus $t_{\alpha} = -1.32$.

Our t-value is not smaller than t_{α} , we cannot reject the null hypothesis. Therefore we cannot prove that people of age 40 are on average heavier than people of age 30.

5. We want to check if a marketing strategy for playing more on-line games has worked. For 8 subjects, we have measured the number of hours they spend per week on on-line games before and after the marketing strategy. This data is given as follows:

hours played before								
hours played after	3	2	0	4	7	4	10	10

Find out whether the marketing strategy works with a significance threshold of 5%.

This is a paired two-sample t-test. Our null hypothesis is $H_0: \mu_Z = 0$ where Z = X - Y. We are going to test this null hypothesis against $H_1: \mu_Z < 0$ since we expect Y to be larger than X. The statistic is then $T = \frac{\bar{Z}}{\hat{\sigma}_Z}\sqrt{n}$. We calculate $\bar{Z} = -0.25$ and $S_Z = 1.49$. Our t-value then is T = -0.47.

We reject our null hypothesis for too small values of T. Then, $P(T(7) \le t_{\alpha}; H_0) = P(T(7) \ge -t_{\alpha}) = 0.05$. By looking in the table we find $-t_{\alpha} = 1.89$, so $t_{\alpha} = -1.89$. Since our t-value is not smaller than t_{α} we cannot reject the null hypothesis. Therefore, we cannot prove that the marketing strategy actually worked.